Why are deep learning, machine learning and AI so important in telemedicine and other types of medical services?
The fields of machine learning and artificial intelligence have many exciting applications to the medical field in general, and telehealth in particular.
One of the biggest and most primary of these synergies is in document review. IBM is revealing how its Watson Health program is able to analyze millions of pages of medical information within seconds, and draw conclusions that can be used for diagnosis, comparison and more. The enormous power of machines to handle large volumes of data is combined with analytical and decision-making prowess in machine learning and artificial intelligence technologies.
Free Download: Machine Learning and Why It Matters |
Beyond just dealing with information, though, machine learning and artificial intelligence can also bring new capabilities to patient examination. For example, in radiology, machine learning algorithms can look at radiology scans and other resources to find evidence of outcomes and realities that can guide human decision-makers.
As another formative example of the power of machine learning and diagnosis, National Institute of Health resources document automated analysis of retinal imaging, which can help to detect certain types of sight loss linked to diabetes.
In addition to all of the above, which is very substantial and groundbreaking functionality, there is also a range of ways in which machine learning and AI can assist with the daily realities of telemedicine. From scheduling to consultation and examination to diagnosis to billing, these types of technologies will be able to automate the telehealth process.
In early telemedicine, the concept was relatively simple – instead of being physically present to do house calls or to consult or examine a patient from remote areas, doctors used videoconferencing and related technologies.
However, with machine learning and AI, doctors will be able to combine that with decision support tools – the automating technologies will do a lot of the work. Doctors will review it and sign on – instead of being only supported by videoconferencing, doctors will also be supported by key assistive technologies that are thinking and learning on their own. This will dramatically change the field of telemedicine soon and rather permanently.
Tags
Written by Justin Stoltzfus | Contributor, Reviewer

Justin Stoltzfus is a freelance writer for various Web and print publications. His work has appeared in online magazines including Preservation Online, a project of the National Historic Trust, and many other venues.
More Q&As from our experts
- What are some key ways that the IoT is affecting health care?
- How do machine learning professionals use structured prediction?
- What is TensorFlow’s role in machine learning?
Related Terms
- Telemedicine
- Telehealth
- Machine Learning
- Artificial Intelligence
- Deep Learning
- Decision Support System
- Clinical Decision Support System
- Video Conferencing
- IBM Watson Supercomputer
- Cloud Computing
Related Articles

4 Technology Lessons Learned Fighting a Health Crisis in Africa

Can Big Data Save Health Care?

The Role of IT in Medical Diagnosis

The Growing Cybersecurity War on the Healthcare Industry
Tech moves fast! Stay ahead of the curve with Techopedia!
Join nearly 200,000 subscribers who receive actionable tech insights from Techopedia.
- The CIO Guide to Information Security
- Robotic Process Automation: What You Need to Know
- Data Governance Is Everyone's Business
- Key Applications for AI in the Supply Chain
- Service Mesh for Mere Mortals - Free 100+ page eBook
- Do You Need a Head of Remote?
- Web Data Collection in 2022 - Everything you need to know